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Summary 
This paper begins with a comprehensive review of literature in the field of 
clarinet sound analysis and synthesis, identifying valuable references from 
previous research. 
 
In the study of noise components, I collected samples of E3, E4, and E5 notes 
through self-recordings and performed preprocessing tasks such as slicing and 
frequency domain transformation. Thirteen representative features were 
selected for spectral analysis, and feature extraction was performed on the 
spectral signals. Utilizing the SVM algorithm based on machine learning, the 
sound quality was first assessed by human hearing and then labeled based on 
the prominence of noise components, thereby constructing a sound quality 
classification model. Although the E5 note cannot be accurately classified, the 
classification accuracy for E3 and E4 test sets reached 90% and 75%, 
respectively. 
 
In terms of clarinet sound construction, I compared and analyzed the recorded 
scales to depict the characteristics of each pitch range of the clarinet. Using filter 
functions, I filtered the clarinet sound model based on the "clarinet-all" function 
in Nyquist, creating a more realistic and expressive clarinet sound model. 
Furthermore, the generated E3 and E4 notes were incorporated into the 
classification model, both of which were classified as high-quality sounds in 
the SVM evaluation. 
 
In conclusion, I analyzed the issue of the SVM algorithm's inability to 
accurately analyze the high-pitched E5 note and proposed a future concept that 
combines the SVM algorithm with the analysis of timbre in different pitch 
ranges of the clarinet. 
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1 Introduction

1.1 Background

The clarinet is a commonly used woodwind instrument that has a unique sound qual-
ity, making it a prominent instrument in solo performances and orchestral music. There-
fore, sound quality plays an important role in the perception of clarinet sound. However,
for beginners, it is often difficult to discern the quality of the clarinet sound. In the process
of playing long notes, they often encounter the problem of unfocused sound. Moreover,
issues such as mouthpiece control and the quality of the reed exacerbate the problem of
noise components in the basic sound. Therefore, automatic evaluation of clarinet sound
has substantial practical value.

Furthermore, the sound characteristics of different regions of the clarinet are distinct.
Due to the presence of overtones, the vibration principles of the high and low registers of
the clarinet differ significantly. In Nyquist sound synthesis, we cannot use the same sound
model to directly adjust the pitch of the clarinet by changing the frequency. Therefore, it is
necessary to adjust and modify the sound of the clarinet in different regions using filters
for sound synthesis.

In recent years, research on clarinet sound based on machine learning technology has
received increasing attention. In this paper, based on the support vector machine (SVM)
method, I selected the three individual notes E3, E4, and E5 to study the sound quality of
the classical clarinet. Additionally, based on the research results, the Author investigated
the sound characteristics of different regions of the clarinet and synthesized a clarinet
sound model starts with a built-in clarinet-all model provided with Nyquist.

1.2 Enhancements and Optimizations

In this second edition of the report, I have standardized the citations and expressions
from the first edition, optimized the algorithms and models, and provided a more in-
depth explanation for certain unclear areas. I also revised the summary and the work I
did in the "My Work" section. I elaborated on the recording process, adding photographs
of the recording environment and a method for quickly trimming audio based on loop
amplitude judgments. Additionally, I re-plotted the frequency domain curve according to
a linear axis and shared my understanding of harmonics and pitch.

In the SVM section, I indicated the sources of the images used in the first edition,
which greatly helped me understand the algorithmic process and recalibrated the objec-
tive function based on my code. To address the poor recognition performance for E5, I
used the overlapped spectrograms after the Fourier transform to more intuitively display
the differences between the average values of the two types of sounds.

In Work 2, since I could not find the source of the original YAMAHA fingering chart,
I cited the updated official version. Regarding the improved clarinet model design in
Model 2, I explained that the model is based on the "clarinet-all" function and adjusted
the parameters through linear fitting by combining the spectrograms and my auditory
perception. I also attempted to more clearly showcase the improvements I made in param-
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eter selection through graphical representation. Furthermore, I converted the originally
generated,less applicable syllables into directly callable functions.

Finally, I incorporated the sound effects of this model into the original model for mea-
surement to explore their actual sound performance.

2 Related Work

2.1 Literature Review

In analyzing the quality and sound of clarinet reeds, Wang Y, Guan X, and Du Y used a
new method based on harmonic structure and energy distribution to evaluate the quality
of clarinet reeds. [1] The researchers decoupled the mass of the reed from the clarinet
and found that the mass of the reed is closely related to the even harmonic. Then they
constructed a feature set that included even harmonic envelopes and harmonic energy
distribution. The researchers recorded annotated clarinet audio data from three levels
of performers and classified the sound quality through machine learning support vector
machines.

In the study of the effective length of the clarinet tube and its sound, Dickens P, France
R, and Smith J used a web-based database to analyze the acoustic details of clarinets con-
taining standard fingerings and some alternative fingerings. [2] The clarinet has a cylin-
drical tube shape, one end of which is acoustically closed and the other end is open. As it
is often used as an example of a closed-open pipe, we show several phenomena that can
be clarified by comparing measurements on a cylindrical body with equivalent acoustic
length to measurements on a clarinet.

Barthet M, Guillemain P, and Kronland-Martinet R studied the relationship between
control gestures, sound color, and their perceptual representations in the clarinet. [3] This
study provides great help for synthesis and control, music analysis and perception, and
music information retrieval. They used a physics-based model to generate synthetic clar-
inet tones by changing the main control parameters of the model (related to blowing pres-
sure and lip pressure on the reed) and obtained a low-dimensional spatial configuration
that best represents the difference rating through multidimensional scaling and hierarchi-
cal clustering of the sound data collected in the experiment. Among them, by comparing
the sound of natural and synthetic clarinets, the odd-even ratio was found to be a good
indicator for predicting the unique vibrating reed situation of the clarinet.

Almeida A, Lemare J, and Sheahan M studied a simple model of the reed mouth of
a single reed instrument and its control parameters. [4] These include intraoral pressure,
force applied by the lips to the reed, application position, and damping of the reed. They
used an automatic clarinet playing system to control intraoral pressure and control the
force and position applied by the lips to the reed through two parameters. By studying
the system of clarinet pitch and volume under different parameters, regions can be plotted
where the intended notes are produced, the pitch is inaccurate, entering another sound
area, slow starting, squeaking or no sound at all.
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2.2 Literature Summary

The above literature has studied various aspects of clarinet acoustics and performance,
providing important scientific support for our in-depth understanding of the sound char-
acteristics and performance techniques of the clarinet. It also indicates that there have
been many rich studies on the sound analysis of clarinets and the clarinet spectrum, espe-
cially in the field of the impact of reeds and mouthpiece pressure on clarinet sound.

2.3 Research Gap

Although there have been many rich studies on the sound of the clarinet, specialized
research on noise generated by factors such as reeds, mouth shape, and clarinet structure
is still lacking. Many times, what we consider as "unfocused" clarinet sound is caused by
excessive noise, so the first half of the study will mainly focus on sound quality research.
However, in order to obtain a more complete understanding of the clarinet sound, it still
needs to conduct further research on noise factors.

3 My work

Figure 1: Flow Chart of My Work

I do such things:

1. Conducting research to identify potential areas of study.

2. Recording clarinet sounds, both obvious and subtle noises, and utilizing python to take
samples automaticly.
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3. Analyzing sound frequency using Matlab and categorizing various sound types using
machine learning.

4. Investigating the characteristics of clarinet sounds in different tonal ranges and im-
proving the clarinet’s sound model starts with the clarinet-all function in Nyquist.

5. Adding sound generated by improved Clarinet Model to the test set and classifying it.

4 Work I

4.1 Construction of the Dataset

Firstly, in the quiet music rehearsal room at midnight, I used the recording device
LYRA, placed at a fixed distance of 2 meters, to record multiple long sound samples of the
clarinet playing E3, E4, E5, as well as a slow-paced sound scale from E3 to E6 (used for
Work II).

Figure 2: The Recording Process

The next step is to begin the cutting of the samples. The author created 60 samples,
each lasting one second, for each of the three types of sustained tones. The sound was con-
verted to mono. The samples used in this experiment were manually cut, and the sound
samples were selected from the stable portion of the temporal signal within a sustained
tone. The sustained tone of the clarinet is composed of rapidly changing sound heads and
a slowly ending sound tail, so the middle section of the sample is the stable portion and
is more comparable horizontally.

As the second version of the study, the author developed a plan for cutting through
looping automaticly based on the improvement suggestions provided by Professor Dan-
nenberg. During the recording of this sustained tone, multiple sustained tones in the same
pitch were recorded in a long audio file, with each sustained tone having almost the same
length, but the intervals between them were not fixed. Therefore, in this loop, second-
based cutting was considered to achieve automatic recognition and cutting of the stable
part of the sustained tone.



4.2 Frequency Domain Transformation Page 7 of 23

Initially, I attempted to implement this algorithm using Nyquist. However, when at-
tempting to use the "snd-maxsamp" function to calculate the maximum frequency after
reading the audio file, an error occurred. I thought that this might be related to the format
of the file when it was read, but was unsure how to debug it. Therefore, using the same
programming ideas, I chose to implement the program using the Python language. The
specific reading method is shown below.

• First, read and store the audio.

• Then, traverse the entire audio and calculate the average value of the envelope in
each second.

• If the average value of the t-second minus the average value of the (t-1)-second >
0.3 * max_amplitude, store the time point in a list.

• Construct a loop. When the time node t_i coincides with the node in the list, store
the audio of this second starting from the time point t_i+1 and ending at the time
point t_i+2.

4.2 Frequency Domain Transformation

To more intuitively see the differences between the samples, we need to perform fre-
quency domain conversions on each sample. Due to the large number of samples and
the need to use machine learning tools in later processes, Matlab was used as the tool to
transform the audio slices into frequency domain signals in matrix form (see the appendix
for the specific conversion code audioFFT.m).

Discrete Fourier Transform (DFT) is the most classic frequency domain conversion
tool:

X[k] =
N−1

∑
n=0

x[n] · e−j2π nk
N (1)

It converts a finite length time domain sequence into a finite length sequence in the fre-
quency domain that is also discrete. Fast Fourier Transform (FFT) is based on the above
formula, using symmetry and repetition properties to reduce the computational complex-
ity fromO(n2) to O(nlogn), greatly improving the calculation speed [14].

The Figure 3 is an example of the FFT transformation result for E31.wav(the first sam-
ple in E3). This image is an excellent example for understanding the principle of instru-
ment harmonics. Pitch is our subjective perception of the high or low of sound, mainly
determined by the fundamental frequency of the sound. Harmonics are a series of fre-
quencies composed of integer multiples of this fundamental frequency[8]. The unique
timbre of the instrument we hear is composed of this fundamental frequency and dif-
ferent harmonics. Since all of the harmonics are equally spaced, the frequency domain
characteristics of the clarinet can be clearly displayed by adjusting the x-axis range using
a standard coordinate system.
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Figure 3: Frequency Domain Signals of E3

In addition, according to the relationship between pitch and fundamental frequency,
we know that the fundamental frequency of E4 is twice that of E3[9]. They also have
some similarities in their frequency domain plots. The following is the frequency domain
plot of E4, which shows the similarity in the frequency domain between E3 and E4. The
similarity in their frequency domains contributes to the unique timbre of the clarinet.

Figure 4: Frequency Domain Signals of E4

4.3 Feature Extraction

After performing the Fast Fourier Transform, the frequency domain data for all sam-
ples of E3, E4, and E5 were obtained. According to the sampling theorem, the data was
transformed into three matrices of 60 x 22050. To further explore the data, this study used
feature extraction to select 13 representative audio features and transformed these three
frequency domain matrices into feature matrices of audio samples, as shown in Figure 5.

After the aforementioned frequency domain transformation, each audio data is trans-
formed into a feature vector of the above 13 data, which represents the characteristics of
the data. Thus, we can obtain a matrix of 60x13. This is the basis for performing SVM.
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Figure 5: Features Used in SVM

4.4 Processing the Data Using SVM

Support Vector Machine (SVM) is a type of generalized linear classifier that performs
binary classification on data in a supervised learning manner, and the decision boundary
is the maximum margin hyperplane obtained by solving the learning sample [10]. Figure
6 shows the case of linearly separable data (can be separated by a straight line) in two
dimensions:

Figure 6: Two Dimensions Separable Data [7] Figure 7: What Kernel Functions Do [7]

In its two-dimensional case, there are two feature vectors. When we have 13 feature
vectors, we only need to solve the maximum margin line in 13 dimensions in the same
way as in two dimensions.

However, not all datasets are separable, so we need to introduce two concepts: the
penalty factor and the kernel function in. The kernel function allows SVM to classify in
a high-dimensional feature space without explicitly calculating the feature mapping. The
radial basis function (RBF) used in this problem’s code is a class of kernel functions [12].

In the specific objective function, 1
2 ||w||2 aims to maximize the classification margin,

and C ∑i ξi aims to penalize misclassified samples. In this process, we need to find a suit-
able set of Lagrange multipliers α values to minimize the objective function. The specific
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mathematical expression of the objective function is as follows [13]:

min
w,ξ,b

1
2
||w||2 + C

N

∑
i=1

ξi

s.t. yi(wT φ(xi) + b) ≥ 1 − ξi
ξi ≥ 0, i = 1, 2, . . . , N .

(2)

When writing the SVM code, the author called the ’svmtrain’ function in LIBSVM and
set the penalty factor C to 10 and the parameter g of the RBF kernel(ϕ(xi)) to 0.01. The
’svmtrain’ function in LIBSVM completes the optimization and calculation of the objective
function internally [11].

In practical applications, I selected 40 samples as the training set, 20 samples as the
test set, normalized all the data, constructed a penalty factor and a radial basis function
parameter, and conducted simulation tests.

The following are the algorithm steps in the SVM classification process:

(1) Clearing environment variables, turning off warning messages, closing open figure
windows, clearing variables, and clearing the command window.

(2) Reading matrix data from an Excel file and storing it in the "res" variable.

(3) Randomly dividing the data into training and test sets, where 40 samples are in the
training set and 20 are in the test set.

(4) Normalizing the data using mapminmax function.

(5) Transposing the training and test data to fit the SVM model.

(6) Creating an SVM model using the svmtrain function with a radial basis function
kernel and specified penalty factor and gamma values.

(7) Testing the model’s performance on the training and test data using the svmpredict
function and calculating the classification error.

(8) Sorting the predicted results and the actual results for both the training and test
sets.

(9) Plotting the comparison between the actual and predicted values for the training
and test sets.

(10) Creating confusion matrices for the training and test sets using the confusion chart
function.

The advantage of the above algorithm is that it can judge the training effect of the
model by comparing the differences between the test set and the training set, and the
confidence matrix can be used to determine its reliability.

4.5 Results and Discussion

As SVM is a classification model based on existing classification, I divided the data in
E3, E4, and E5 into two categories based on whether the noise in the sound was obvious,
and input them into SVM.m for testing, obtaining the following results:
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Figure 8: Test and Train Result of E3

Figure 9: Test and Train Result of E4

Figure 10: Test and Train Result of E5
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During the experimentation process, I found that some parts of E3 and E4 can be dis-
tinguished very well into these two categories, with accuracy rates of around 90% for
both. However, E5 cannot be distinguished using these feature vectors.

To determine the reason why the sound cannot be distinguished, all E5 data in this
study were extracted and their mean data for good E5 sounds and bad E5 sounds were
obtained according to their original classification. They were then imported into MAT-
LAB for frequency domain analysis, and their frequency spectrum is shown in Figure 11.
Through the comparison and analysis of the frequency spectrum, it can be found that the
noise component is not significant and does not affect the features such as skewness and
peak value that have been extracted.

Specifically, for the frequency spectrum itself, good performance in playing produces
fuller and louder sound at lower frequencies, and the adjacent sound volume is higher
around specific frequency of the harmonic. In contrast, the sound with obvious noise has
a lower volume at lower frequencies, and the sound is louder than that of the good per-
formance in playing at the harmonic frequencies in the high-frequency range. However,
these features cannot be reflected in the feature extraction mentioned above, which is also
the reason why this model cannot classify the high-frequency range well.

Figure 11: Result of FFT(E3 1)

5 Work II

5.1 Timbre Analysis of Different Vocal Ranges

The sound range of the clarinet is mainly divided by the use of harmonic keys. The
clarinet produces a middle to high range sound when using harmonic keys and a middle
to low range sound when not using them. Additionally, the clarinet can achieve overblow-
ing through special fingerings, allowing it to play notes ranging from C6 to C7.

In the "throat" area of the clarinet, specifically G4, GS4, A4, and AS4, there are rela-
tively few closed holes in the tube, resulting in significant white noise. Starting from B4,
the overall timbre of the clarinet becomes more focused and bright due to the use of a
harmonic key, and the sound production principles inside the tube change to a certain
extent.
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Figure 12 is a chart of commonly used fingerings for the clarinet, it was published by
YAMAHA, and we could find the mentioned features in this fingering chart:

Figure 12: Yamaha Clarinet Fingering Chart[6]

5.2 Model Optimization based on ’clarinet-all’ Function

In Nyquist, there is a built-in function called ’clarinet-all’, which is constructed based
on a simple single reed model and provides many parameters for adjustment, which can
effectively showcase the timbre of a single reed instrument. However, since this is a rela-
tively basic model, its principle is based on directly changing the effective tube length of
the instrument to alter its pitch [15], it cannot showcase the characteristic timbre differ-
ences between different registers of the single reed instrument.

Therefore, after constructing the basic instrument parameters, I improved the above
function based on the sound characteristics of modern classical single reed instruments
by adjusting the reed hardness and instrument sound noise. Regarding the selection of
filters, Nyquist’s built-in functions provide low-pass and high-pass filters ranging from
first to eighth order. The higher the order of the filter, the more poles it has, the narrower
the transition band, and the smoother the frequency response in the passband [16]. Since
there is only one instrument here and the spectrum is relatively simple, I chose low-order
filters for the mid-to-low range, but for the high-range, which is particularly sensitive to
filter selection, I chose high-order filters.

In particular, after Professor Dannenberg proposed modification suggestions, I re-
adjusted the fitting parameters for each register and changed the original segmented scale
to a function that can be directly called by pitch, and added linear fitting functions to
further transition between different registers, making the sound effects between differ-
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ent ranges more natural. For specific parameter selection, I set the threshold for high-
frequency sound based on experimental results and my own subjective auditory percep-
tion for the low-pass filter, while the high-pass filter mainly protects the instrument’s fun-
damental frequency sound.

Overall, this improved model satisfies the characteristic that the more open the instru-
ment’s tone holes, the narrower the sound bandwidth: from the low-register to the BS4
register, the bandwidth gradually narrows, and then there is a jump in the B4 register. BS4
is the note with the most open tone holes in the single reed instrument, and there will be
a strong sensation of dryness when playing this note. To solve this problem, performers
also use many alternative fingerings to play this note, that is, closing the tone holes in the
low-register without changing the instrument’s effective tube length to expand the note’s
bandwidth.

Figure 13: Result of FFT(E3 1)

5.3 Sound Effect Evaluation

After generating the sound, I also selected the stable part for classification. In the SVM
process, I added the sounds generated by Nyquist to the test set and used the original
training set for training.

Since the classification model for E5 itself cannot achieve good classification, and I
have not yet found a better feature for fitting, I did not evaluate the E5 sound generated
by Nyquist. Therefore, I used the method mentioned above to bring in the sounds of E3
and E4, perform feature extraction and other operations from the slice, and then input
them into the model for classification.

I was very happy to find out that they were all classified as good sounds in this classical
clarinet-based classification model. Of course, this is also largely due to the fact that the
sounds generated by Nyquist are very pure and have a strong classical clarinet flavor.
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Of course, the classification features of my SVM are all composed of frequency domain
signals. If the time domain signal features are also added to them, I think it can definitely
distinguish which sounds are synthesized by Nyquist, because its time domain spectrum
is very smooth.

6 Evaluation

6.1 Strengths

• The SVM method is effective in handling multi-feature problems, and in practical
use, I found that this method particularly excels in analyzing the low-pitched sound
range.

• The innovation of the model lies in the analysis of the characteristics of different
sound ranges of the clarinet, which gives each sound range of the synthesized clar-
inet sound different parameters, thereby more accurately portraying the sound char-
acteristics of the clarinet.

6.2 Weaknesses

• The model’s fitting performance for the high-pitched sound range, especially the
range that uses harmonic keys, is not satisfactory, and it is necessary to try selecting
other more representative features.

• In addition to the differences between sound ranges, there are also certain differ-
ences between each note within the same sound range, but this model is not suffi-
ciently detailed from this perspective. Many people who practice playing the clar-
inet, even if they do not have absolute pitch, can often judge which note they are
playing based on changes in the timbre of each pitch.

• However, the timbre of a clarinet cannot be described by a single criterion of good
or bad. The criteria used to judge the quality of clarinet sound in this study are
based on classical clarinet and cannot be used as a standard for judging jazz clarinet.
Additionally, since the training dataset was based on sustained tones, it may not be
able to accurately identify techniques such as tonguing or glissando during testing.

7 Future Work

In the future, I believe that in addition to optimizing the model itself, combining the
work I and work II that I have done will be a very meaningful task. This involves studying
the characteristics of each note in detail to construct a top-level clarinet sound synthesizer.

Furthermore, I am inspired by Professor Dannenberg’s research on trumpet sound
synthesis[5], which considers factors such as melodic contour, articulation, and dynamics
to synthesize realistic trumpet performances using Spectral Interpolation Synthesis. I also
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want to conduct similar in-depth exploration and research on the clarinet. This can not
only be used in synthesizer performance and software orchestration, but also in fields
such as music information retrieval. Furthermore, through digitization, the timbre of the
clarinet, as a musical instrument, can be preserved as part of human memory.
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Appendix A: Program Codes

Here are the program codes we used in our research.

sliceMaker.py

# This Python script reads an audio file, calculates the average
# amplitude of the envelope per second, stores the time points with
# a significant difference in amplitude , and extracts and saves
# the audio segments.
#
# Author: Jason Xu
# School: Beijing Normal University , China
# Email: 1773117640@qq.com
# Date: 2023/4/21
#
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

import numpy as np
from pydub import AudioSegment
import os
##
# 1. Read and store the audio file
# You can change the file read path here
audio_file = "/Users/xujiasheng/Documents/Nyquist/projects\
/ICMproject/ICM/projectMaterials/originalAudio/E4.wav"
# Reading audio data
audio = AudioSegment.from_wav(audio_file)

##
# 2. Calculate the average amplitude of the envelope per second
# Get the audio sample rate
samples_per_second = audio.frame_rate
# Convert audio duration from milliseconds to seconds
seconds = len(audio) // 1000
# Store the average amplitude of each sample point
average_amplitude = []
# Iterate over seconds to compute the average amplitude for
# each time segment in the audio file
for i in range(seconds):

start = i * samples_per_second
end = (i + 1) * samples_per_second
# Get the audio data for the time segment from start to end
segment = audio.get_sample_slice(start, end)
# Convert the audio sample data to an array containing
# the amplitude values for all the samples
# in the current time segment
segment_numpy = np.array(segment.get_array_of_samples())
# Generate a list that contains the average amplitude
# for each time segment.
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average_amplitude.append(np.mean(np.abs(segment_numpy)))

##
# 3. Calculate and store time points
# Create an empty list to store time points
time_points = []
# Get the maximum average amplitude across all time segments
max_amplitude = max(average_amplitude)
# Find time points where the difference between the average amplitude
# of the current time segment and the previous one is greater
# than 30% of the maximum amplitude
for t in range(1, len(average_amplitude)):

if average_amplitude[t] - average_amplitude[t - 1]\
> 0.3* max_amplitude:
time_points.append(t)

##
# 4. Extract and save audio segments
output_directory = "/Users/xujiasheng/Desktop/audio_segments/"
# Check if the output directory path exists.
if not os.path.exists(output_directory):

os.makedirs(output_directory)
# Save the extracted audio segments that meet the condition
# to new WAV files, using the time points as indices
for i, t_i in enumerate(time_points):

start_ms = (t_i + 1) * 1000
end_ms = (t_i + 2) * 1000
extracted_segment = audio[start_ms:end_ms]
# Convert stereo audio to mono
extracted_segment = extracted_segment.set_channels(1)
extracted_segment.export(f"{output_directory}\
segment_{i}.wav", format="wav")

improvedClarinetModel.sal

; This SAL language code improve a clarinet sound model and is based
; on a built-in clarinet-all function in Nyquist.
; It adjusts the reed stiffness , vibration frequency , noise level,
; and uses low-pass and high-pass filters to make the clarinet’s
; timbre better match the characteristics of different pitch ranges.
; Author: Jason Xu
; School: Beijing Normal University , China
; Email: 1773117640@qq.com
; Date: 2023/4/21
; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

; Build a basic clarinet sound model, specifying the vibration
; and reed stiffness
define function clar-test (pitch: 80, slide-amt: 0, noise-level: 0,
reed-stiff: 0.64)
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begin
with breath = pwlv(1, 0.2, 0.95, 0.9, 0.3) ~ 2, freq-env =

pwlv(0), vib-freq = 1000, vib-gain = 0.02
return(clarinet -all(pitch, breath, freq-env, vib-freq, vib-gain,

reed-stiff, noise-level))
end

; Define a linear transformation function that allows sound to be
; filtered and transformed in different regions by calling this function
define function lin-interp (x, x1, x2, y1, y2)
begin
return (y1 + (x - x1) * (y2 - y1) / (x2 - x1))

end

; Define the clarinet sound playback function.
; According to the range of the Bb clarinet , the lowest note is E3 = 50.
; Although the low frequency range of the clarinet has a low
; fundamental frequency , it often has higher harmonics , making
; the low frequency signal fuller and more penetrating.
; The basic lp and hp functions are not used because they are
; found to lose the original timbre of the clarinet during use.
function clar-play(pitch_value: 60)
begin
if pitch_value < 62 & pitch_value >= 50 then
begin
with lowpass_val = lin-interp(pitch_value , 50, 62, 1300, 1000),

highpass_val = lin-interp(pitch_value , 50, 62, 100, 200)
play lowpass2(highpass2(clar-test(pitch: pitch_value ,

slide-amt: 0, noise-level: 0, reed-stiff: 0.64) , highpass_val),
lowpass_val) ~ 1

end

; The mid-range of the clarinet is somewhat dry compared to the low
; range, with the sound mainly concentrated in the fundamental frequency.
; Since almost all holes are open, there are fewer harmonics ,
; which can be suppressed by a low-pass filter

else if pitch_value < 69 then
begin
with lowpass_val = lin-interp(pitch_value , 62, 68, 1000, 800),

highpass_val = lin-interp(pitch_value , 62, 68, 200, 400)
play lowpass2(highpass2(clar-test(pitch: pitch_value ,

slide-amt: 0, noise-level: 0.4, reed-stiff: 0.68) , highpass_val),
lowpass_val) ~ 1

end

; In the high range, the main harmonics of the clarinet come from
; the fundamental frequency during playing.The note 69 corresponds to
; the B4 of the clarinet , which is played using the harmonic key and
; closing all holes (except for the harmonic key). The principle of
; vibration changes at this point, so the sound change is not
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; continuous. The lowpass6 function works better here.
else if pitch_value < 82 then
begin
with lowpass_val = lin-interp(pitch_value , 69, 82, 1800, 2300),

highpass_val = lin-interp(pitch_value , 69, 82, 400, 900)
play lowpass6(highpass2(clar-test(pitch: pitch_value ,

slide-amt: 0, noise-level: 0.5, reed-stiff: 0.72) , highpass_val),
lowpass_val) ~ 1

end

; This range belongs to the super high range of the clarinet. The
; performer often produces more noise with a sharper sound.
; Therefore , the noise level is increased , and the low frequency
; performance is suppressed by the high-pass filter

else if pitch_value < 87 then
begin
with lowpass_val = lin-interp(pitch_value , 82, 87, 2300, 2700),

highpass_val = lin-interp(pitch_value , 82, 87, 900, 1500)
play lowpass8(highpass2(clar-test(pitch: pitch_value ,

slide-amt: 0, noise-level: 0.6, reed-stiff: 0.77) , highpass_val),
lowpass_val) ~ 1

end
end

; Sound example, modify the pitch_value at the end
exec clar-play(pitch_value: 52) ~ 1.5

audioFFT.m

%In this code, the file path for reading can be changed by modifying
%the value of s1, and the
%number of files to be read can be changed by modifying the range of i.
%Author:Jason Xu
%School:Beijing Normal University , China
%Email:1773117640@qq.com
%Date:2023/3/1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Due to the small number of overall files and the fact that the size of
%the matrix
%will change with the number of samples, there is no need to preallocate
%matrix memory.
%l = zeros(50000,200); %Optional
for i = 1

s1 = ’.\processedSamples\E3\’; %Modify the file path here.
s2 = string(i);
ss = strcat(s1, s2);
s3 = ’.wav’;
s = strcat(ss, s3); %Get the file address.
%disp(s);
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%The sample data of the audio is read and stored in the matrix x,
%and the sampling rate Fs of the audio is obtained.
[x_o,Fs] = audioread(s);
x = x_o(:,1);
x = x’;
N = length(x); %The total number of sample data is calculated.
y = fft(x); %Fast Fourier Transform is performed.
f = Fs/N*(0:round(N/2)-1);

%The horizontal frequency values after Fast Fourier Transform are constructed
m = abs(y(1:round(N/2)));

%The absolute value of the FFT result is taken.
m = m’;
l(:,i) = m(:,1);

%Save the value of m into the corresponding column of matrix l.
end

featureDomain.m

%This is a code for feature extraction on sound spectrogram matrix. A total
%of 13 features are extracted as follows:
%Mean, Std, Skewness , Kurtosis , max, min, Peak2Peak , RMS, CrestFactor ,
%ShapeFactor , ImpulseFactor , MarginFactor , Energy
%Author:Jason Xu
%School:Beijing Normal University , China
%Email:1773117640@qq.com
%Date:2023/3/1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Modify the file path here.
load(’.\spectrumMatrixFFT\l5.mat’)
%Create a table
features = table;
for i=1:60

v = l(:,i);
%features of specturms
features.Mean(i) = mean(v); %Mean
features.Std(i) = std(v); %Std
features.Skewness(i) = skewness(v); %Skewness
features.Kurtosis(i) = kurtosis(v); %Kurtosis
features.max(i) = max(v); %max
features.min(i) = min(v); %min
features.Peak2Peak(i) = peak2peak(v); %Peak2Peak
features.RMS(i) = rms(v); %RMS
features.CrestFactor(i) = max(v)/rms(v); %CrestFactor
features.ShapeFactor(i) = rms(v)/mean(abs(v)); %ShapeFactor
features.ImpulseFactor(i) = max(v)/mean(abs(v)); %ImpulseFactor
features.MarginFactor(i) = max(v)/mean(abs(v))^2; %MarginFactor
features.Energy(i) = sum(v.^2); %Energy

end
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SVM.m

%This is a code for SVM classification of a 60*13 matrix with 60 samples
%and 13 audio signal features. It is divided into five steps: data import,
%data processing , model training , model testing, and image drawing.
%Firstly, the features are extracted by taking each column of the
%spectrogram matrix as a vector,
%and then combining them into a feature matrix.
%The model code was referenced from
%https://www.bilibili.com/video/BV1xa411K7aF/?spm_id_from
%=333.337.search-card.all.click&vd_source=7a30b342baf263332cb2825bdf0a44a8
%and was modified by selecting plugins, debugging data, and modifying images.
%Author:Jason Xu
%School:Beijing Normal University , China
%Email:1773117640@qq.com
%Date:2023/3/1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Clear Environment Variables
warning off % Turn off warning messages
close all % Close open figure windows
clear % Clear variables
clc % Clear command window
%Modify the file path here.
res = xlsread(’.\featureMatrix\features3.xlsx’);
%Divide into Training and Test Sets
temp = randperm(60);
P_train = res(temp(21: 60), 1: 13)’;
T_train = res(temp(21: 60), 14)’;
M = size(P_train, 2);
P_test = res(temp(1: 20), 1: 13)’;
T_test = res(temp(1: 20), 14)’;
N = size(P_test, 2);
%Normalize Data
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax(’apply’, P_test, ps_input );
t_train = T_train;
t_test = T_test ;
%Transpose to Fit Model
p_train = p_train ’; p_test = p_test ’;
t_train = t_train ’; t_test = t_test ’;
%Model Creation
c = 10.0; % Penalty factor
g = 0.01; % Radial basis function parameter
cmd = [’-t 2’, ’-c’, num2str(c), ’-g’, num2str(g)];
%The svmtrain function here requires configuring the C hybrid compilation:
%https://www.csie.ntu.edu.tw/~cjlin/libsvm/, download the libsvm plugin.
model = svmtrain(t_train, p_train, cmd);
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%Simulation Testing
T_sim1 = svmpredict(t_train, p_train, model);
T_sim2 = svmpredict(t_test , p_test , model);
%Performance Evaluation
error1 = sum((T_sim1’ == T_train)) / M * 100;
error2 = sum((T_sim2’ == T_test )) / N * 100;
%Data Sorting
[T_train, index_1] = sort(T_train);
[T_test , index_2] = sort(T_test );
T_sim1 = T_sim1(index_1);
T_sim2 = T_sim2(index_2);
%Plotting
figure
plot(1: M, T_train, ’r-*’, 1: M, T_sim1, ’b-o’, ’LineWidth’, 1)
legend(’Actual Value’, ’Predicted Value’)
xlabel(’Predicted Samples’)
ylabel(’Prediction Results’)
%Modify the file name here.
string = {’Comparison of Training Set Prediction Results (E3)’;
[’Accuracy = ’ num2str(error1) ’%’]};
title(string)
grid
figure
plot(1: N, T_test, ’r-*’, 1: N, T_sim2, ’b-o’, ’LineWidth’, 1)
legend(’Actual Value’, ’Predicted Value’)
xlabel(’Predicted Samples’)
ylabel(’Prediction Results’)
%Modify the file name here.
string = {’Comparison of Test Set Prediction Results (E3)’;
[’Accuracy = ’ num2str(error2) ’%’]};
title(string)
grid
% Confusion Matrix
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = ’Confusion Matrix for Train Data’;
cm.ColumnSummary = ’column-normalized’;
cm.RowSummary = ’row-normalized’;

figure
cm = confusionchart(T_test, T_sim2);
cm.Title = ’Confusion Matrix for Test Data’;
cm.ColumnSummary = ’column-normalized’;
cm.RowSummary = ’row-normalized’;
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